Latest Posts

Elements of Molecular Neurobiology 3d ed - C. U. M. Smith

Contents


1 Introductory Orientation . . . . . . . . . . . . . 1
1.1 Outline of Nervous Systems . . . . . . . . 2
1.2 Vertebrate Nervous Systems . . . . . . . . 4
1.3 Cells of the Nervous Systems . . . . . . . 7
1.3.1 Neurons . . . . . . . . . . . . . . . . . . . 7
1.3.2 Glia . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Organisation of Synapses . . . . . . . . . . 14
1.5 Organisation of Neurons in the Brain . 16
2 The Conformation of Informational
Macromolecules . . . . . . . . . . . . . . . . . . 22
2.1 Proteins . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1 Primary Structure . . . . . . . . . . . . 23
2.1.2 Secondary Structure. . . . . . . . . . . 28
2.1.3 Tertiary Structure . . . . . . . . . . . . 35
2.1.4 Quaternary Structure . . . . . . . . . . 37
2.1.5 Molecular Chaperones . . . . . . . . . 38
2.2 Nucleic Acids . . . . . . . . . . . . . . . . . . 39
2.2.1 DNA . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 RNA . . . . . . . . . . . . . . . . . . . . . 41
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . 44

3 Information Processing in Cells . . . . . . . . 47
3.1 The Genetic Code . . . . . . . . . . . . . . . 48
3.2 Replication . . . . . . . . . . . . . . . . . . . . 49
3.3 ‘DNA Makes RNA and RNA Makes
Protein’ . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Transcription. . . . . . . . . . . . . . . . 49
3.3.2 Post-transcriptional Processing . . . 56
3.3.3 Translation . . . . . . . . . . . . . . . . . 60
BOX 3.1: Antisense and triplex
oligonucleotides . . . . . . . . . . . . . . 63
3.4 Control of the Expression of Genetic
Information . . . . . . . . . . . . . . . . . . . 65
3.4.1 Genomic Control. . . . . . . . . . . . . 66
3.4.2 Transcriptional Control . . . . . . . . 67
BOX 3.2: Oncogenes, protooncogenes
and IEGs . . . . . . . . . . 69
3.4.3 Post-transcriptional Control . . . . . 73
3.4.4 Translational Control. . . . . . . . . . 74
3.4.5 Post-translational Control. . . . . . . 75
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . 76
4 Molecular Evolution . . . . . . . . . . . . . . . . 77
4.1 Mutation . . . . . . . . . . . . . . . . . . . . . 79
4.1.1 Point Mutations . . . . . . . . . . . . . 79
4.1.2 Proof-reading and Repair
Mechanisms . . . . . . . . . . . . . . . . 80
4.1.3 Chromosomal Mutations . . . . . . . 84
4.2 Protein Evolution . . . . . . . . . . . . . . . 87
4.2.1 Evolutionary Development of
Protein Molecules and
Phylogenetic Relationships . . . . . . 87
4.2.2 Evolutionary Relationships of
Different Proteins . . . . . . . . . . . . 91
4.2.3 Evolution by Differential Posttranscriptional
and Posttranslational
Processing: the Opioids
and Other Neuroactive Peptides . . 92
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . 95
5 Manipulating Biomolecules . . . . . . . . . . . 96
5.1 Restriction Endonucleases . . . . . . . . . 97
5.2 Separation of Restriction Fragments . . 98
5.3 Restriction Maps . . . . . . . . . . . . . . . . 98
5.4 Recombination . . . . . . . . . . . . . . . . . 100
5.5 Cloning. . . . . . . . . . . . . . . . . . . . . . . 101

5.5.1 Plasmids . . . . . . . . . . . . . . . . . . . 101
5.5.2 Phage . . . . . . . . . . . . . . . . . . . . . 102
5.5.3 Cosmids . . . . . . . . . . . . . . . . . . . 103
5.5.4 Bacterial Artificial Chromosomes
(BACs) . . . . . . . . . . . . . . . . . . . . 103
5.5.5 Yeast Artifical Chromosomes
(YACs) . . . . . . . . . . . . . . . . . . . . 107
5.6 Isolating Bacteria Containing
Recombinant Plasmids or Phage . . . . . 107
5.7 The ‘Shotgun’ Construction of
‘Genomic’ Gene Libraries. . . . . . . . . . 107
5.8 A Technique for Finding a Gene in the
Library . . . . . . . . . . . . . . . . . . . . . . . 108
5.9 Construction of a ‘cDNA’ Gene
Library . . . . . . . . . . . . . . . . . . . . . . . 109
5.10 Fishing for Genes in a cDNA Library 111
5.11 Positional Cloning . . . . . . . . . . . . . . 112
5.12 The Polymerase Chain Reaction
(PCR) . . . . . . . . . . . . . . . . . . . . . . . 112
5.13 Sequence Analysis of DNA. . . . . . . . 115
5.14 Prokaryotic Expression Vectors for
Eukaryotic DNA . . . . . . . . . . . . . . . 117
5.15 Xenopus Oocyte as an Expression
Vector for Membrane Proteins . . . . . 117
5.16 Site-directed Mutagenesis . . . . . . . . . 119
5.17 Gene Targeting and Knockout
Genetics . . . . . . . . . . . . . . . . . . . . . 121
5.18 Targeted Gene Expression . . . . . . . . 126
5.19 Hybridisation Histochemistry . . . . . . 126
5.20 DNA Chips. . . . . . . . . . . . . . . . . . . 127
5.21 Conclusion . . . . . . . . . . . . . . . . . . . 128
6 Genomics . . . . . . . . . . . . . . . . . . . . . . . 130
6.1 Some History . . . . . . . . . . . . . . . . . . 130
6.2 Methodology. . . . . . . . . . . . . . . . . . . 131
6.3 Salient Features of the Human Genome 132
6.4 The Genes of Neuropathology . . . . . . 135
6.5 Single Nucleotide Polymorphisms
(SNPs) . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 Other Genomes . . . . . . . . . . . . . . . . . 137
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . 138
7 Biomembranes . . . . . . . . . . . . . . . . . . . . 140
7.1 Lipids . . . . . . . . . . . . . . . . . . . . . . . . 140
7.1.1 Phospholipids . . . . . . . . . . . . . . . 141
7.1.2 Glycolipids . . . . . . . . . . . . . . . . . 144
7.1.3 Cholesterol . . . . . . . . . . . . . . . . . 145
7.2 Membrane Order and Fluidity . . . . . . 147
7.3 Membrane Asymmetry. . . . . . . . . . . . 148
7.4 Proteins . . . . . . . . . . . . . . . . . . . . . . 148
7.5 Mobility of Membrane Proteins . . . . . 150
7.6 Synthesis of Biomembranes . . . . . . . . 151
7.7 Myelin and Myelination . . . . . . . . . . . 152
7.8 The Submembranous Cytoskeleton . . . 155
7.9 Junctions Between Cells . . . . . . . . . . . 158
7.9.1 Tight Junctions . . . . . . . . . . . . . . 158
7.9.2 Gap Junctions . . . . . . . . . . . . . . . 160
7.10 Gap Junctions and Neuropathology . 164
7.10.1 Deafness . . . . . . . . . . . . . . . . . . 164
7.10.2 Cataract . . . . . . . . . . . . . . . . . . 164
7.10.3 Charcot–Marie–Tooth (Type 2)
Disease . . . . . . . . . . . . . . . . . . . 164
7.10.4 Spreading Hyperexcitability
(Epilepsy) and Hypoexcitability
(Spreading Depression) . . . . . . . . 165
7.11 Conclusion and Forward Look . . . . . 165
8 G-protein-coupled Receptors . . . . . . . . . . 167
8.1 Messengers and Receptors . . . . . . . . . 167
8.2 The 7TM Serpentine Receptors. . . . . . 169
8.3 G-proteins. . . . . . . . . . . . . . . . . . . . . 170
BOX 8.1: The GTPase superfamily. 171
8.4 G-protein Collision-coupling Systems . 172
8.5 Effectors and Second Messengers . . . . 174
8.5.1. Adenylyl Cyclases . . . . . . . . . . . . 174
8.5.2 PIP2-phospholipase
(Phospholipase C-bÞ. . . . . . . . . . . 176
8.6 Synaptic Significance of ‘Collisioncoupling’
Systems . . . . . . . . . . . . . . . 179
8.7 Networks of G-protein Signalling
Systems. . . . . . . . . . . . . . . . . . . . . . . 179
8.8 The Adrenergic Receptor (AR) . . . . . . 180
8.9 The Muscarinic Acetylcholine
Receptor (mAChR) . . . . . . . . . . . . . . 183
8.10 Metabotropic Glutamate
Receptors (mGluRs). . . . . . . . . . . . . 187
8.11 Neurokinin Receptors (NKRs) . . . . . 188
8.12 Cannabinoid Receptors (CBRs). . . . . 189
8.13 Rhodopsin. . . . . . . . . . . . . . . . . . . . 190
8.14 Cone Opsins . . . . . . . . . . . . . . . . . . 194
8.15 Conclusion . . . . . . . . . . . . . . . . . . . 196
9 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.1 Energetics . . . . . . . . . . . . . . . . . . . . . 197
9.2 The Na++K+ Pump . . . . . . . . . . . . . 200

9.3 The Calcium Pump . . . . . . . . . . . . . . 201
BOX 9.1: Calmodulin . . . . . . . . . . 204
9.4 Other Pumps and Transport
Mechanisms . . . . . . . . . . . . . . . . . . . 205
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . 206
10 Ligand-gated Ion Channels . . . . . . . . . . 207
10.1 The Nicotinic Acetylcholine Receptor 208
10.1.1 Structure . . . . . . . . . . . . . . . . . . 208
10.1.2 Function . . . . . . . . . . . . . . . . . . 213
10.1.3 Development . . . . . . . . . . . . . . . 219
10.1.4 Pathologies . . . . . . . . . . . . . . . . 221
10.1.5 CNS Acetylcholine Receptors . . . 222
BOX 10.1: Evolution of the
nAChRs . . . . . . . . . . . . . . . . . . . 222
10.2 The GABAA Receptor . . . . . . . . . . . 224
10.2.1 Pathology . . . . . . . . . . . . . . . . . 225
10.3 The Glycine Receptor. . . . . . . . . . . . 226
10.4 Ionotropic Glutamate Receptors
(iGluRs) . . . . . . . . . . . . . . . . . . . . . 228
10.4.1 AMPA Receptors. . . . . . . . . . . . 229
10.4.2 KA Receptors . . . . . . . . . . . . . . 229
10.4.3 NMDA Receptors . . . . . . . . . . . 230
BOX 10.2: The inositol
triphosphate (IP3 or InsP3)
receptor . . . . . . . . . . . . . . . . . . . 231
10.5 Purinoceptors . . . . . . . . . . . . . . . . . 234
10.6 Conclusion . . . . . . . . . . . . . . . . . . . 235
11 Voltage-gated Channels. . . . . . . . . . . . . 237
11.1 The KcsA Channel. . . . . . . . . . . . . . 238
11.2 Neuronal K+ Channels . . . . . . . . . . 241
11.2.1 2TM(1P) Channels; Kir Channels 243
11.2.2 4TM(2P) Channels; K+ Leak
Channels . . . . . . . . . . . . . . . . . . 245
11.2.3 6TM(1P) Channels; Kv Channels . 245
BOX 11.1: Cyclic nucleotide-gated
(CNG) channels. . . . . . . . . . . . . . 246
11.3 Ca2+ Channels . . . . . . . . . . . . . . . . 253
11.3.1 Structure . . . . . . . . . . . . . . . . . . 255
11.3.2 Diversity . . . . . . . . . . . . . . . . . . 258
11.3.3 Biophysics . . . . . . . . . . . . . . . . . 258
11.4 Na+ Channels . . . . . . . . . . . . . . . . . 259
11.4.1 Structure . . . . . . . . . . . . . . . . . . 259
11.4.2 Diversity . . . . . . . . . . . . . . . . . . 262
11.4.3 Biophysics . . . . . . . . . . . . . . . . . 264
11.5 Ion Selectivity and Voltage Sensitivity 267
11.5.1 Ion Selectivity . . . . . . . . . . . . . . 267
11.5.2 Voltage Sensitivity . . . . . . . . . . . 267
11.6 Voltage-Sensitive Chloride Channels . . 268
11.6.1 ClC Channels . . . . . . . . . . . . . . 268
11.6.2 Cln Channels . . . . . . . . . . . . . . . 270
11.6.3 Phospholemman. . . . . . . . . . . . . 270
11.7 Channelopathies . . . . . . . . . . . . . . . 271
11.7.1 Potassium Channels . . . . . . . . . . 271
11.7.2 Calcium Channels . . . . . . . . . . . 271
11.7.3 Sodium Channels . . . . . . . . . . . . 271
11.7.4 Chloride Channels . . . . . . . . . . . 272
11.8 Evolution of Ion Channels . . . . . . . . . 272
11.9 Conclusion and Forward Look . . . . . . 274
12 Resting Potentials and Cable Conduction 277
12.1 Measurement of the Resting Potential 277
12.2 The Origin of the Resting Potential . . 278
12.3 Electrotonic Potentials and Cable
Conduction . . . . . . . . . . . . . . . . . . . 281
12.3.1 Length . . . . . . . . . . . . . . . . . . . 283
12.3.2 Diameter . . . . . . . . . . . . . . . . . . 284
12.4 Conclusion . . . . . . . . . . . . . . . . . . . 285
13 Sensory Transduction . . . . . . . . . . . . . . 286
13.1 Chemoreceptors . . . . . . . . . . . . . . . . 287
13.1.1 Chemosensitivity in
Prokaryocytes . . . . . . . . . . . . . . 287
13.1.2 Chemosensitivity in Vertebrates . . 292
13.2 Photoreceptors. . . . . . . . . . . . . . . . . 297
BOX 13.1: Retinitis pigmentosa . . . 300
13.3 Mechanoreceptors . . . . . . . . . . . . . . 304
13.3.1 A Prokaryote Mechanoreceptor. . 305
13.3.2 Mechanosensitivity in
Caenorhabditis elegans . . . . . . . . 309
13.3.3 Mechanosensitivity in
Vertebrates: Hair Cells . . . . . . . . 312
13.4 Conclusion . . . . . . . . . . . . . . . . . . . 318
14 The Action Potential. . . . . . . . . . . . . . . 319
14.1 Voltage-clamp Analyses . . . . . . . . . . 319
14.2 Patch-clamp Analyses. . . . . . . . . . . . 323
14.3 Propagation of the Action Potential . 325
BOX 14.1: Early history of the
impulse . . . . . . . . . . . . . . . . . . . . 326
14.4 Initiation of the Impulse. . . . . . . . . . 329
BOX 14.2: Switching off neurons by
manipulating K+ channels . . . . . . 330
14.5 Rate of Propagation. . . . . . . . . . . . . 331
14.6 Conclusion . . . . . . . . . . . . . . . . . . . 333
15 The Neuron as a Secretory Cell . . . . . . . 334
15.1 Neurons and Secretions . . . . . . . . . . 335

15.2 Synthesis in the Perikaryon . . . . . . . . 336
15.2.1 Co-translational Insertion . . . . . . 337
15.2.2 The Golgi Body and
Post-translational Modification . . 339
15.3 Transport Along the Axon . . . . . . . . 342
15.3.1 Microfilaments. . . . . . . . . . . . . . 344
15.3.2 Intermediate Filaments (IFs) . . . . 344
BOX 15.1: Subcellular geography of
protein biosynthesis in neurons . . . 345
15.3.3 Microtubules (MTs) . . . . . . . . . . 345
15.3.4 The Axonal Cytoskeleton . . . . . . 346
15.3.5 Axoplasmic Transport
Summarised . . . . . . . . . . . . . . . . 353
15.4 Exocytosis and Endocytosis at the
Synaptic Terminal . . . . . . . . . . . . . . 353
15.4.1 Vesicle Mustering . . . . . . . . . . . . 354
15.4.2 The Ca2+ Trigger. . . . . . . . . . . . 357
15.4.3 Vesicle Docking . . . . . . . . . . . . . 357
15.4.4 Transmitter Release . . . . . . . . . . 360
15.4.5 Dissociation of Fusion Complex
and Retrieval and Reconstitution
of Vesicle Membrane . . . . . . . . . 361
15.4.6 Refilling of Vesicle . . . . . . . . . . . 362
BOX 15.2: Vesicular neurotransmitter
transporters . . . . . . . . 363
15.4.7 Termination of Transmitter
Release . . . . . . . . . . . . . . . . . . . 364
15.4.8 Modulation of Release . . . . . . . . 365
15.5 Conclusion . . . . . . . . . . . . . . . . . . . 365
16 Neurotransmitters and Neuromodulators . 366
16.1 Acetylcholine. . . . . . . . . . . . . . . . . . 368
BOX 16.1: Criteria for
neurotransmitters . . . . . . . . . . . . . 368
16.2 Amino Acids . . . . . . . . . . . . . . . . . . 372
16.2.1 Excitatory Amino Acids (EAAs):
Glutamic Acid and Aspartic
Acid . . . . . . . . . . . . . . . . . . . . . 372
16.2.2 Inhibitory Amino Acids (IAAs):
g-Aminobutyric Acid and Glycine 374
BOX 16.2: Otto Loewi and
vagusstoff . . . . . . . . . . . . . . . . . . 376
16.3 Serotonin (¼5-Hydroxytryptamine,
5-HT) . . . . . . . . . . . . . . . . . . . . . . . 380
16.4 Catecholamines . . . . . . . . . . . . . . . . 382
16.4.1 Dopamine (DA). . . . . . . . . . . . . 383
16.4.2 Noradrenaline
(¼Norepinephrine, NE) . . . . . . . 385
16.5 Purines . . . . . . . . . . . . . . . . . . . . . . 389
16.6 Cannabinoids . . . . . . . . . . . . . . . . . 390
BOX 16.3: Reuptake neurotransmitter
transporters . . . . . . . . 392
16.7 Peptides . . . . . . . . . . . . . . . . . . . . . 393
16.7.1 Substance P. . . . . . . . . . . . . . . . 395
16.7.2 Enkephalins . . . . . . . . . . . . . . . . 396
16.8 Cohabitation of Peptides and
Non-peptides . . . . . . . . . . . . . . . . . . 397
16.9 Nitric Oxide (NO) . . . . . . . . . . . . . . 399
16.10 Conclusion. . . . . . . . . . . . . . . . . . . 400
17 The Postsynaptic Cell . . . . . . . . . . . . . . 401
17.1 Synaptosomes . . . . . . . . . . . . . . . . . 401
17.2 The Postsynaptic Density . . . . . . . . . 403
17.3 Electrophysiology of the Postsynaptic
Membrane. . . . . . . . . . . . . . . . . . . . 404
17.3.1 The Excitatory Synapse . . . . . . . 404
BOX 17.1: Cajal, Sherrington and
the beginnings of synaptology . . . . 406
17.3.2 The Inhibitory Synapse. . . . . . . . 408
17.3.3 Interaction of EPSPs and IPSPs . 410
17.4 Ion Channels in the Postsynaptic
Membrane. . . . . . . . . . . . . . . . . . . . 410
17.5 Second Messenger Control of Ion
Channels . . . . . . . . . . . . . . . . . . . . . 412
17.6 Second Messenger Control of Gene
Expression. . . . . . . . . . . . . . . . . . . . 415
17.7 The Pinealocyte . . . . . . . . . . . . . . . . 416
17.8 Conclusion and Forward Look . . . . . 418
18 Developmental Genetics of the Brain. . . . 419
18.1 Introduction: ‘Ontology Recapitulates
Phylogeny’ . . . . . . . . . . . . . . . . . . . 419
18.2 Establishing an Anteroposterior
(A-P) Axis in Drosophila. . . . . . . . . . 421
18.3 Initial Subdivision of the Drosophila
Embryo . . . . . . . . . . . . . . . . . . . . . 422
18.4 The A-P Axis in Vertebrate Central
Nervous Systems . . . . . . . . . . . . . . . 423
18.5 Segmentation Genes in Mus musculus 425
18.6 Homeosis and Homeotic Mutations . 425
18.7 Homeobox Genes . . . . . . . . . . . . . . 426
18.8 Homeobox Genes and the Early
Development of the Brain. . . . . . . . . 427
18.9 POU Genes and Neuronal
Differentiation . . . . . . . . . . . . . . . . . 431
18.10 Sequential Expression Of
Transcription Factors in
Drosophila CNS . . . . . . . . . . . . . . . 433

18.11 Pax-6: Developmental Genetics of
Eyes and Olfactory Systems . . . . . . 434
18.12 Other Genes Involved in Neuronal
Differentiation . . . . . . . . . . . . . . . . 436
18.13 Conclusion. . . . . . . . . . . . . . . . . . . 436
19 Epigenetics of the Brain . . . . . . . . . . . . 437
19.1 The Origins of Neurons and Glia . . . 438
19.2 Neural Stem Cells . . . . . . . . . . . . . . 443
19.3 Tracing Neuronal Lineages . . . . . . . . 445
19.3.1 Retrovirus Tagging. . . . . . . . . . . 446
19.3.2 Enhancer Trapping. . . . . . . . . . . 446
19.4 Morphogenesis of Neurons . . . . . . . . 446
19.5 Morphogenesis of the Drosophila
Compound Eye . . . . . . . . . . . . . . . . 450
19.6 Growth Cones . . . . . . . . . . . . . . . . . 452
19.7 Pathfinding . . . . . . . . . . . . . . . . . . . 454
BOX 19.1: Eph receptors and
ephrins . . . . . . . . . . . . . . . . . . . . 456
19.8 Cell Adhesion Molecules (CAMs) . . . 457
19.9 Growth Factors and Differential
Survival. . . . . . . . . . . . . . . . . . . . . . 462
BOX 19.2: Neurotransmitters as
growth factors . . . . . . . . . . . . . . . 464
19.10 Morphopoietic Fields . . . . . . . . . . . 466
19.11 Functional Sculpting. . . . . . . . . . . . 469
19.12 Conclusion. . . . . . . . . . . . . . . . . . . 476
20 Memory . . . . . . . . . . . . . . . . . . . . . . . 477
20.1 Some Definitions . . . . . . . . . . . . . . . 478
20.1.1 Classical Conditioning . . . . . . . . 479
20.1.2 Operant Conditioning. . . . . . . . . 479
20.2 Short- and Long-term Memory . . . . . 480
20.2.1 Relation Between STM and
LTM. . . . . . . . . . . . . . . . . . . . . 481
20.3 Where is the Memory Trace Located? 481
20.4 Invertebrate Systems . . . . . . . . . . . . 485
20.4.1 Thermal Conditioning in
C. elegans . . . . . . . . . . . . . . . . . 486
20.4.2 Drosophila . . . . . . . . . . . . . . . . . 487
20.4.3 Aplysia and the Molecular
Biology of Memory . . . . . . . . . . 492
20.5 The Memory Trace in Mammals . . . . 498
20.5.1 Post-tetanic Potentiation and
Long-term Potentiation. . . . . . . . 499
20.5.2 Fibre Pathways in the
Hippocampus . . . . . . . . . . . . . . 500
20.5.3 Perforant and Schaffer
Collateral Fibres . . . . . . . . . . . . 501
20.5.4 The CRE Site Again. . . . . . . . . . 502
20.5.5 Mossy Fibre Pathway. . . . . . . . . 503
20.5.6 Histology . . . . . . . . . . . . . . . . . 503
20.5.7 Non-genomic Mechanisms . . . . . 503
BOX 20.1: Dendritic spines . . . . . . 504
20.6 Conclusion . . . . . . . . . . . . . . . . . . . 506
21 Some Pathologies. . . . . . . . . . . . . . . . . 507
21.1 Neuroses, Psychoses and the
Mind/Brain Dichotomy . . . . . . . . . . 508
21.2 Prions and Prion Diseases. . . . . . . . . 508
21.3 Phenylketonuria (PKU) . . . . . . . . . . 511
21.4 Fragile X Syndrome (FraX) . . . . . . . 513
21.5 Neurofibromatoses . . . . . . . . . . . . . . 514
21.6 Motor Neuron Disease (MND) . . . . . 514
21.7 Huntington’s Disease (¼Chorea)
(HD). . . . . . . . . . . . . . . . . . . . . . . . 516
21.8 Depression . . . . . . . . . . . . . . . . . . . 518
21.8.1 Endogenous Depression . . . . . . . 519
21.8.2 Exogenous Depression . . . . . . . . 519
21.8.3 Neurochemistry of Depression. . . 520
21.8.4 Stress and Depression. . . . . . . . . 521
21.9 Parkinson’s Disease (PD) . . . . . . . . . 522
BOX 21.1 a-Synuclein . . . . . . . . . . 526
21.10 Alzheimer’s Disease (AD) . . . . . . . . 526
21.10.1 Diagnosis. . . . . . . . . . . . . . . . . 527
21.10.2 Aetiology. . . . . . . . . . . . . . . . . 527
21.10.3 Molecular Pathology. . . . . . . . . 527
21.10.4 Environmental Influences:
Aluminium . . . . . . . . . . . . . . . 536
21.10.5 The BAPtist Proposal: an
Amyloid Cascade Hypothesis. . . 538
21.10.6 Therapy. . . . . . . . . . . . . . . . . . 538
21.11 Conclusion. . . . . . . . . . . . . . . . . . . 539
Appendix 1 Molecules and Consciousness. . . . 541
Appendix 2 Units . . . . . . . . . . . . . . . . . . . . 545
Appendix 3 Data . . . . . . . . . . . . . . . . . . . . 546
Appendix 4 Genes . . . . . . . . . . . . . . . . . . . . 548
Appendix 5 Physical Models of Ion Conduction
and Gating. . . . . . . . . . . . . . . . . . . . . . . . . 550

Download book
Tags:

About author

Mahesh Loves to write about admission process in US and help prospective students.

0 comments

Leave a Reply

Related Posts with Thumbnails